jueves, 12 de febrero de 2015

Aceleración centrípeta:
La aceleración centrípeta (también llamada aceleración normal) es una magnitud relacionada con el cambio de dirección de la velocidad de una partícula en movimiento cuando recorre una trayectoria curvilínea. Dada una trayectoria curvilínea la aceleración centrípeta va dirigida hacia el centro de curvatura de la trayectoria.

Cuando una partícula se mueve en una trayectoria curvilínea, aunque se mueva con rapidez constante (por ejemplo el MCU), su velocidad cambia de dirección, ya que esta es un vector tangente a la trayectoria, y en las curvas dicha tangente no es constante.

La aceleración centrípeta, a diferencia de la aceleración centrífuga, está provocada por una fuerza real requerida para que cualquier observador inercial pudiera dar cuenta de cómo se curva la trayectoria de una partícula que no realiza un movimiento rectilíneo.
En coordenadas polares, la aceleración de un cuerpo puede descomponerse en sus componentes radial  y tangencial, quedando:
Donde: r y θ son las coordenadas polares de la partícula; ω es la velocidad angular (que es igual a dθ/dt); α es la aceleración angular (que es igual a dω/dt).





Se le llama aceleración centrípeta al término rω2 presente en la componente radial de la aceleración ar. Dado que v = ωr, la aceleración centrípeta también se puede escribir como:


El término 2(dr/dt)ω localizado en la componente tangencial de la aceleración es conocido como la aceleración de Coriolis.
En el movimiento circunferencial, mientras la dirección del vector velocidad va variando punto a punto, la aceleración centrípeta se manifiesta como un vector con origen en el vector posición y con dirección hacia el centro de la circunferencia.

En MCU, la velocidad tangencial es constante en módulo durante todo el movimiento. Sin embargo, es un vector que constantemente varía de dirección (siempre sobre una recta tangente a la circunferencia en el punto en donde se encuentre el móvil). Para producir la modificación de una velocidad aparece una aceleración, pero debido a que no varía el módulo de la velocidad, el vector de esta aceleración es perpendicular al vector de la velocidad.
La aceleración centrípeta se calcula como la velocidad tangencial al cuadrado sobre el radio o cómo la velocidad angular por la velocidad tangencial:




En un movimiento circular cualquiera, la aceleración puede tener una componente en dirección tangencial a la circunferencia y otra componente en dirección radial y dirigida hacia el centro de la trayectoria. A la primera se le llama aceleración tangencial y a la segunda, aceleración centrípeta.
La aceleración tangencial se manifiesta como un cambio en el módulo de la velocidad tangencial, mientras que la aceleración centrípeta aparece como un cambio en la dirección y sentido de la velocidad.
En un movimiento circular uniforme, debido a que el módulo de la velocidad tangencial es constante, solo existe una aceleración que cambia la dirección y el sentido de la velocidad, es decir, la aceleración centrípeta.
El cambio del vector velocidad tangencial apunta hacia el centro de curvatura, al igual que la aceleración centrípeta  ac.

Si se considera el cambio de velocidad, ∆v = v f − vi , que experimenta un móvil en un pequeño intervalo de tiempo ∆t  , se ve que ∆v es radial y está dirigido hacia el centro curvatura. La aceleración, por lo tanto, también tiene esa dirección y sentido, y por eso se denomina aceleración centrípeta.

No hay comentarios.:

Publicar un comentario